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The velocity sensor is a platinum wire 1, attached to glass 2 (Fig. 1). The essence of the electrodiffu~
sion method of measurement is briefly as follows: A flux of electrolyte, containing two kinds of ions, e.g.,
Fe(CN)g™ and Fe(CN)“,' is incident on the sensor on its normal working surface; a rather large negative po-
tential (0.4-0.8 V) is maintained on the platinum, leading to a charge exchange reaction between the three-
charge ion and four-charge ion, Fe(CN)§~ + e = Fe(CN)é‘; this electrochemical reaction is remarkable in
the fact that, of the oxidizing-regenerative reactions, it apparently has the largest rate and takes place so
rapidly that the rate of change of current through the cathode is limited only by convective diffusion of the
triple-charge ions to the electrode surface. The equation describing the ion diffusion process has the form
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where c is the concentration of ions vanishing at the electrode; D is the diffusion coefficient of these ions;
and v(y,t) is the velocity component of the liquid normal to the electrode surface and depending only on the
time t and the coordinate y normal to the surface. The fact that Eq. (1) contains only the single coordinate
y makes it a great deal simpler to construct a sensor theory. This property is known as the equiadmission
property of the surface and also holds in the rotating-disk electrode method {1]. The presence of the velocity
v(y, t) inEq. (1) means that the oncoming liquid velocity is related to the current through the cathode, and
 this is the principal basis for the method of measurement. A detailed description of the method is contained,
e.g., in [2]. The method was used to investigate flows of rheologically complex media [3], and in liquid—gas
flows {4].

Because of the low diffusion coefficient of the reacting ions (D ~ 1071° m?/¢c) the electrode diffusion
method has inertia, on the order of the expected inertia of a thermal anemometer [2]. The amplitude loss and
the inertial phase delay of high-frequency fluctuations can be calculated and corrected if one knows the fre-
quency characteristic (FC) of the sensor H(iw), defined as the ratio of the complex amplitude of the harmonic
signal at the exit i(w) (current) to the "signal' amplitude at the "input' (velocity). It is convenient to con-
sider the FC as dimensionless and normalized to unity at zero frequency

, L (0)w (0)
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In this form the FC can be used as a direct measure of the inertia of the sensor at frequency w. The FC
makes sense only for linear systems. This means that in calculations one must assume that the velocity and
concentration fluctuations are small and must linearize the system of equations describing the sensor opera-
tion. The condition for velocity fluctuation amplitude to be small usually holds in actual experiments.

In deriving the system of sensor equations the following assumptions are made: 1) The Reynolds num-
ber, based on the outer sensor diameter d, is quite large, and the approximation of boundary layer theory
are valid. 2) The electrode occupies only a small area near the stagnation point, so that the components of
radial and normal velocity in the boundary layer can be written in the form u = r8f(y, t}/oy, v = —2{(y, t},

Fig. 1
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where r is the distance from the axis of symmetry; and f(y, t) is the stream function for axisymmetric

flow [5]. 3) The potential flow outside the boundary layer near the stagnation point is given by the formulas
U= kw(t)r/d, V = —2kw(t)y/d, where w(t) is the liquid velocity at large distance from the sensor (y > d);
and k is some dimensionless constant on the order of unity, given in principle by an exact solution of the
outer potential flow problem (for the body analyzed by Rankine [6], created by a source in a uniform flow,

k = 4). This constant can be determined during sensor calibration. 4) It is assumed that the Schmidt number
is large, Sc = »/D » 1 (v is the kinematic viscosity of the 11qu1d) In this case the diffusion boundary layer
is less than the hydrodynamic boundary layer by a factor of Sc!/3, and the velocity in it is given by the for-
mula v = =&y, t)/0y° |y =o ¥’

The equations for the average quantities and the linearized equations for the fluctuations are obtained
from the Navier-Stokes equations and Eq. (1)
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where the subscripts 0 and 1 denote, respectively, steady-state and fluctuating quantities; the primes for the
functi'c'ms denote differentiation with respect to y, and the notation has been used: ay = kwy/d; a; = kwy (t)/d;
by = fo(y = 0)3 by = £{ (y = 0, t) (wpand w; (t) are the average and fluctuating velocity at infinity). The
boundary conditions for Egs. (3)=(6) have the form
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Equations (3) and (4) have known solutions (see, e.g., [5]). Equations (5) and (6) can be integrated as the
equations of two sequentially coupled subsystems. The first subsystem is the hydrodynamic boundary layer,
at the inlet to which (on the right in Eq. (5)) are given the velocity fluctuations wy(t) and at the "exit" we ob~
tain the values b; = £}(y = 0). The second subsystem describes the diffusion boundary layer: At the "inlet"
we are given the quantity by, and at the "exit" the mass flux which also determines the current through the
electrode, according to the Faraday law: i; = —FSD ¢} (y = 0; t), where F is the Faraday number; and S is
the cathode area. It is clear that the ¥C for the whole system is equal to the product of the FCs of the sub-
systems.

We shall take only one harmonic from the velocity fluctuation spectrum ai(t) = c11e1°"t ; because of the

subsystem linearity we have f;(t) = fie wi , ¢; (t) = Gelwt, where @, 1, ¢; are the complex amplitudes of
the corresponding fluctuations.

We introduce the dimensionless variables
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where c., is the ion concentration at infinity; and b, = f,'(y = 0). In these variables the equations and the
boundary conditions have the form
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At the lower limit of the integrals in Egs. (9) and (11) we apply the condition of Eq. (7). The primes in Egs.
(9)=(12) now denote differentiation with respect to the corresponding argument 7+ or 7n-. Calculations show
that ¢ (7. = 0) = 1.312; this is in complete agreement with the value from [5]. For convenience the numeri-
cal coefficient 0.834 = 1.3127%3 is left in Eq. (12) and is not introduced into w-_.

Equation (10) is integrated analytically. The numerical solution of the remaining equations in Egs. (9)~
(12) is obtained by the time~dependent method. To do this we introduce derivatives with respect to the de-
sired function on the left side of the equations relative to some fictitious time 7, and with an implicit differ-
ence scheme we find the corresponding solutions which are steady-state with respect to 7, corresponding to
a given frequency.

As a result we obtain two complex functions Hg = @'(n.= 0) and Hg = ¥'(n- = 0), depending only on
w+ and w- and which are dimensionless and which are not normalized to the FC subsystems. The moduli and
arguments of these functions are shown in Fig. 2 (the straight lines are the asymptotic values of the argu~
ments for ws - — ).

The correctness of the numerical resulis is confirmed by comparing with the asymptotic formulas ob~
tained in the limit as w — 0 and w — «, from Eqs. (11) and (12). The modulus of H, deviates from the
asymptotic formula by less than 1% even for w.> 30, while the same deviation of | Hg | from the asymptotic
value is reached only for w- > 100. The asymptotic formulas are used for an accurate approximation to the
resnlts of the numerical computation
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The relative error in the approximation of Egs. (15)~(18) does not exceed 0.5%.

We note an interesting feature of the hydrodynamic boundary layer. The modulus of He increases with
frequency, and its argument is positive: The phase of the fluctuations at the "exist" leads the phase of the
fluctuations at the "inlet." The quantity b(t) is associated with friction near the stagnation point. In fact, the
tangential friction stress is

Ty = PV(0u/dy)y—g = pvrb(t),

and, as was shown in [5], the friction fluctuations lead the velocity fluctuations in phase, in the boundary layer.
The FC of the diffusion boundary layer is normal: The high-frequency fluctuations are strongly suppressed

in amplitude and are delayed in phase. The total FC of the electrode diffusion velocity sensor was calculated
in [7], but only for certain values of Sc. The authors of that paper did not note that the total FC of the sensor
is decomposed into the product of the two universal frequency functions. Comparison of our results with the
values calculated in [7] showed that the FC moduli differ by nc more than 3%, but that the difference in phases
is as high as 7%. These rather large deviations are due, apparently, to an unsuccessful method of calcuiation

used in {7], the method of "ranging," using the boundary conditions.

Using Eq. (2), we can now write a final formula for the modulus of the normalized FC of the velocity
sensor
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 where o_ = }‘:—’—Ii (%)1/3
The phase of the FC is defined as the sum of the phases in Eqgs. (16) and (18). The error in the result~
ing formulas does not exceed 1%. These can be used to obtain the spectra and the individual cases of turbu-
lent velocity fluctuations.
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EXPERIMENTAL INVESTIGATION OF SONIC
AND SUPERSONIC ANNULAR JETS

M. A. Koval' and A. I. Shvets UDC 533.695.7

A considerable number of theoretical and experimental reports, which are surveyed in [1, 2], e.g., have
been devoted to the investigation of flow in supersonic annular jets. The influence of the Mach number of the
jet and the expansion ratio on the value of the base pressure has been established experimentally and the
principal modes of flow in annular jets have been determined. Until now, however, the influence of the rela~
tive sizes of annular nozzles and of the profiling of the flow-through part on the flow has been little studied,
in connection with which the present work was performed. Comparisons are made of the expansion ratio of
the escaping jet, the wave structure, and the pressure in the base region.

The flow in three sonic and three supersonic jets escaping from annular nozzles with plane cuts was
investigated experimentally. The subsonic flow channels in the nozzles provided for not less than fivefold
compression of the stream and were profiled in such a way that a uniform stream was assured in the throats
of the supersonic nozzles or at the cuts of the sonic nozzles. In the exit cross sections of the sonic nozzles
the ratio of the inner to the outer diameter was d/D = 0.5, 0.75, and 0.9 (Fig. 1). The supersonic channels
were conical, and the nozzles had the following parameters: d/D = 0.6; u = 15°; = 24°; M, = 2.63; d/D =
0.68; p =10 B = 6°; Mgy = 1.8; d/D = 0.91; p = 10°; g = 10°; Mq = 2.78 (M, is the rated Mach number of
the nozzle).

1. Pressure in Base Region

In order to study the influence of the relative diameter of a nozzle on the relative base pressure p; =
Ppo/ Po, measured at the axis of the nozzle face (the index b is for the base cut, 0 for the nozzle axis, and «
for parameters of the flooded space into which the jet discharges), in Fig. 1 we give the dependence p; = f(n)
for the three sonic jets and one of the supersonic ones (M, = 1: d/D = 0.9 (1, 2), d/D = 0.75 (3,4) d/D =
0.5 (5, 6); M, = 2.63, u = 15°, g = 24°: d/D = 0.6 (7)). Since the expansion ratio of a sonic jet cannot be less
thann = 1 (n = p,/p,, where p, is the pressure at the nozzle cut), the quantity n' = paMfl/ p,, is taken as
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