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The  ve loc i ty  s ens o r  is a p la t inum wi re  1, a t tached to g lass  2 (Fig.  1). The  e s s e n c e  of the e lec t rod i f fu -  
s ion  method of m e a s u r e m e n t  is b r i e f ly  as  follows: A flux of e l ec t ro ly te ,  containing two kinds of ions,  e .g . ,  
Fe(CN)I-  and Fe(CN}~-,: is incident on the senso r  on i ts  no rma l  working su r face ;  a r a t h e r  l a rge  nsgat ive  po-  
tent ia l  (0.4-0.8 V ) is  main ta ined  on the plat inum, leading to a charge  exchange r eac t ion  be tween the t h r e e -  
cha rge  ion and f o u r - c h a r g e  ion, Fe (CN)s  3- + e'~-~ Fe (CN)~- ;  this  e l e c t r o c h e m i c a l  r eac t ion  is r e n m r k a b l e  in 
the fact  that ,  of the ox id iz ing - regene ra t ive  r eac t ions ,  i t  apparen t ly  has  the l a r g e s t  r a t e  and takes  place so 
rap id ly  that  the r a t e  of change of cu r r en t  through the cathode is l imi ted  only by convect ive  diffusion of the 
t r i p l e - c h a r g e  ions to the e lec t rode  sur face .  The  equation desc r ib ing  the ion diffusion p r o c e s s  has  the fo rm 

ac , ac = D ~ (1) 

where  c is the concent ra t ion  of ions vanishing at  the e lec t rode ;  D is the diffusion coeff icient  of these  ions; 
and v ( y ,  t )  is  the veloci ty  component  of the liquid no rma l  to the e lec t rode  su r face  and depending only on the 
t ime  t and the coordinate  y n o r m a l  to the su r face .  The fact  that  Eq. (1) contains only the single coordinate  
y m a k e s  it  a g r ea t  deal  s i m p l e r  to cons t ruc t  a s enso r  theory.  Th i s  p rope r ty  is known as  the equladmiss ion  
p rope r ty  of the su r f ace  and a l so  holds in the ro t a t ing -d i sk  e l ec t rode  method [1]. The p r e sence  of the ve loc i ty  
v (y ,  t )  inEq.  (1) means  that  the oncoming liquid ve loc i ty  is r e l a t ed  to the c u r r e n t  through the cathode, and 
this  is  the p r inc ipa l  b a s i s  for  the method of m e a s u r e m e n t .  A deta i led desc r ip t ion  of the method is contained, 
e .g. ,  in [2]. The  method was used to inves t iga te  flows of rheologica l ly  complex  med ia  [3], and in l i q u i d - g a s  
flows [4]. 

Because  of the low diffusion coeff ic ient  of the reac t ing  ions (D ~ 10 -l~ m2/c)  the e l ec t rode  diffusion 
method has  iner t ia ,  on the o rde r  of the expected  iner t i a  of a t h e r m a l  a n e m o m e t e r  [2]. The ampli tude loss  and 
the iner t ia l  phase  delay of h igh- f requency  f luctuations can be ca lcula ted  and c o r r e c t e d  if one knows the f r e -  
quency c h a r a c t e r i s t i c  (FC) of the senso r  H (it0), defined as  the ra t io  of the complex  ampli tude of the ha rmon ic  
s ignal  a t  the exi t  i(c0) ( cu r ren t )  to the "s igna l"  ampl i tude  a t  the " input"  (veloci ty) .  It  is convenient  to con-  
s ide r  the FC as  d imens ion les s  and normal i zed  to unity a t  z e r o  f requency 

H (i(o) 7(~o) ,~ (o) (2) 
- ~(o) ~(~)" 

In this  f o r m  the FC can be  used as  a d i r ec t  m e a s u r e  of the iner t ia  of the senso r  a t  f requency c0. The FC 
m a k e s  sense  only for l inear  s y s t e m s .  This  means  that  in calculat ions one m u s t  a s s u m e  that  the veloci ty  and 
concent ra t ion  fluctuations a r e  s m a l l  and m u s t  l inea r ize  the s y s t e m  of equations desc r ib ing  the senso r  o p e r a -  
tion. The condition for ve loci ty  f luctuat ion ampl i tude to be sma l l  usual ly holds in actual  expe r imen t s .  

In der iv ing the s y s t e m  of s enso r  equat ions the following assumpt ions  a r e  made:  1) The Reynolds num-  
b e r ,  ba sed  on the outer  s enso r  d i am e t e r  d, is quite l a rge ,  and the approx imat ion  of boundary  l ayer  theory  
a r e  valid.  2) The  e l ec t rode  occupies  only a sma l l  a r e a  nea r  the s tagnat ion point,  so that  the components  of 
r ad ia l  and no rma l  ve loc i ty  in the boundary  l aye r  can be wr i t t en  in the fo rm u = r 3 f ( y ,  t ) /0y ,  v = - 2 f ( y ,  t ) ,  

l 
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l 

Fig. 1 
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where  r is the dis tance f rom the axis of symmet ry ;  and f (y ,  t)  is the s t r e a m  function for ax i symmet r i c  
flow [5]. 3) The potential  flow outside the boundary  l aye r  near  the stagnation point is given by the formulas  
U = kw(t)  r / d ,  V = - 2 k w ( t ) y / d ,  where  w ( t )  is the liquid veloci ty  a t  la rge  dis tance f rom the sensor  (y >> d) ;  
and k is some d imens ion less  constant  on the o rd e r  of unity, given in pr inciple  by an exact  solution of the 
outer  potential  flow problem (for the bodyaua ly zed  by  Rankine [6], c rea ted  by a source  in a uniform flow, 
k = 4) .  This  constant  can be de te rmined  during senso r  cal ibrat ion.  4) It is a s sumed  that the Schmidt number 
is large ,  Sc = v / D  >> 1 (v is the k inemat ic  v i scos i ty  of the liquid). In this  case  the diffusion boundary layer  
is l ess  than the hydrodynamic  boundary l aye r  by a factor  of Sc s/~, and the veloci ty  in it is given by  the f o r -  
muia v = -02f(y, t) /Oy 2 ly =0 Y~. 

The  equations for the average  quanti t ies  and the l inear ized  equations for  the fluctuations a re  obtained 
from the Navier-Stokes equations and Eq. (1) 

in: - 2.,'d0 - -  ~'fo' = a~:,. 

bof'c'o + De o = O; 
O/t . . . . .  chtt 
- -  = 2/o/1 - -  2/of~ - -  2];/o - -  v/l = 2aoa,  ~ dt;  a t  

Oc 1 o , D c  1 * , = b, g-Co ot boy'Cl - -  

(3) 

(4) 

(5) 

(6) 

where  the subscr ip t s  0 and 1 denote, respec t ive ly ,  s t eady-s t a t e  and fluctuating quanti t ies;  the p r imes  for the 
functions denote dif ferent ia t ion with r e s p e c t  to y, and the notation has  been  used: a 0 = kw0/d; a 1 = kws ( t ) /d;  
b0 = ~0(Y = 0); bl = ~l' (Y = 0, t)  (w0 and w l ( t )  a r e  the average  and fluctuating veloci ty  at  infinity}. The 
boundary conditions for  Eqs.  (3}-46) have the fo rm 

f o = f , = l ~ = / ; = O ,  C o = e ~ = o  for v = O ;  (7) 

i o = a o ,  l ; = a .  c 0 = c . ,  ~ = 0  for V = ~ 1 7 6  (S) 

Equations (3) and (4) have known solutions (see ,  e .g . ,  [5]). Equations (5) and (6) can be integrated as the 
equations of two sequential ly coupled subsys tems.  The f i r s t  subsys tem is the hydrodynamic boundary layer ,  
a t  the inlet  to which (on the r ight  in Eq. (5)) a re  given the veloci ty  fluctuations wt ( t )  and at  the "exi t"  we ob-  
ta in  the values  b I = f'l'(Y = 0). The second subsys tem desc r ibes  the diffusion boundary layer :  At the "inlet"  
we a r e  given the quantity bs, and at  the " e x i t "  the mass  flux which also de te rmines  the cu r r en t  through the 
e lec t rode ,  according to the Fa raday  law: i s = --FSD c~ (y = 0; t ) ,  where  F is the Faraday  number;  and S is 
the cathode a rea .  It is c lea r  that the FC for the whole sys t em is equal to the product  of the FCs of the sub-  
sys tems .  

We shall  take only one harmonic  f rom the veloci ty  fluctuation spec t rum a s ( t )  = aseic~ ; because  of the 
subsys tem l inear i ty  we have fl ( t )  = ~te it~ c 1 ( t )  = Ele ~ t ,  where  ~1, fs ,  cs  a r e  the complex amplitudes of 
the cor responding  fluctuations.  

We introduce the d imens ionless  var iab les  

[aoXti /2 ['o ~]; 0 
n+ .... W J  v ,  % 0 > )  = 7 0 , % (n+) = ~ ,  , %  = - "  

, boy" co +o v,  ( ~ ~ , / , .  
~ -  = \ ~ ]  v, *o (n-), = 7L' *~ (~-) =: =q-'c, o,_ = ~--/ -%, 

where  coo is the ion concentra t ion at  infinity; and gs = fl ' (Y = 0 ). In these  var iab les  the equations and the 
boundary conditions have the form 

~ +  

r -- % .1%dq+ -- (Po -= t; (9) 
o 

4 , ;  + *'o -= o; ( lo)  

~l+ II._ 

io,+g -=- 2q,.,r -- 2% I" q)d,l+ -- 2q' j' %dq+ -- q" : 2 .  ho+; (11) 
b o 

i 0 . 8 3 4 c o _ q ;  - -  q[g'  - -  *" := ~l~g0; ( 1 2 )  

(131 qo=qo--*o ..-q: =0 for 11+,-=0; 
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~ , ) =  ~e = t~o= 1, ~ = 0  for ~ t + , - = o o .  (14) 

At the lower  l imi t  of the in tegra l s  in Eqs.  (9) and (11) we apply the condition of Eq. (7). The  p r i m e s  in Eqs.  
(9)-(12) now denote di f ferent ia t ion with r e s p e c t  to the cor responding  a rgumen t  TI+ or 7- .  Calculat ions show 
that  ~ ~ (71 + = 0) = 1.312; this  is in comple te  a g r e e m e n t  with the value f rom [5]. For  convenience the numer i~  
ca l  coeff ic ient  0.834 = 1.312 -2/3 is left  in Eq. (12) and is not introduced into w_. 

Equation (10) is in tegra ted  analyt ica l ly .  The n u m e r i c a l  solution of the r ema in ing  equations in Eqs.  (9)- 
(12) is obtained by the t ime-dependen t  method.  To do this  we introduce de r iva t ives  with r e s p e c t  to the de -  
s i r ed  function on the left  side of the equat ions re la t ive  to some fict i t ious t ime  T, and with an impi ic i t  d i f f e r -  
ence  s cheme  we find the co r respond ing  solut ions which a r e  s t e a d y - s t a t e  with r e s p e c t  to T, co r respond ing  to 
a given f requency.  

As a r e s u l t  we obtain two complex  functions Hg = ~ '  (7+ = 0) and H d = $ '  ( V _ = 0), depending only on 
co§ and w- and which a r e  d imens ion les s  and which a r e  not no rmal i zed  to the FC s u b s y s t e m s .  The  moduli  and 
a r g u m e n t s  of these  functions a r e  shown in Fig. 2 (the s t r a igh t  l ines a r e  the a sympto t i c  values  of the a r g u -  
m e n t s  for  ~0+, _ ~ ~). 

The  c o r r e c t n e s s  of the n u m e r i c a l  r e s u l t s  is conf i rmed  by  compar ing  with the a sympto t i c  fo rmulas  ob-  
ta ined in the l imi t  as  w ~ 0 and w ~ ~ ,  f rom Eqs.  (11) and (12). The  modulus of Hg devia tes  f r o m  the 
a sympto t i c  fo rmula  by l e s s  than 1% even for 0J§ > 30, while the s ame  deviat ion of I Hd I f r o m  the a sympto t i c  
value is r eached  only for w_ > 100. The  a sympto t i c  fo rmulas  a r e  used for  an accu ra t e  approx imat ion  to the 
remf l t s  of the n u m e r i c a l  computat ion 

l Hg ! = (t5 § o)+)l,a; (15) 

arg Hg--  0.5 arctg (0,256o)+): (16) 

t ' O 9 --3 2 3/4 ~ = _ 3 . 1 0  ~ ~ . ( t7 )  
] H d l =  C.259 1 ~4.45--~-~--':--L-~'-~0-%i} ' 

arg H d == --~i.5 arctg (0.2tlo)_ (i :-- 2.04-i0-3o)~_)). (18) 

The r e l a t i ve  e r r o r  in the approx imat ion  of Eqs. (15)-(18) does not exceed 0.5%. 

We note an in te res t ing  fea ture  of the hydrodynamic  boundary  layer .  The  modulus of  Hg i n c r e a s e s  with 
f requency,  and i ts  a r g u m e n t  is  posi t ive:  The phase  of the f luctuations a t  the " e x i s t "  leads  the phase  of the 
f luctuat ions a t  the "inlet." The quanti ty b ( t )  is  a s soc i a t ed  with f r ic t ion n e a r  the s tagnat ion point. In fact ,  the 
tangent ia l  f r ic t ion  s t r e s s  is 

T~ = pv(Ou/Og)~= o = pvrb(t), 

and, as  was shown in [5], the f r ic t ion fluctuations lead the ve loc i ty  f luctuations in phase ,  in the boundary  layer .  
The  FC of the diffusion boundary  l aye r  is no rmal :  The h igh- f requency  fluctuations a r e  s t rongly  s u p p r e s s e d  
in ampl i tude  and a r e  delayed in phase.  The  to ta l  FC of the e l ec t rode  diffusion veloci ty  s enso r  was calcula ted 
in [7], but only for ce r t a in  values  of Sc. The  authors  of that  paper  did not note that  the to ta l  FC of the sensor  
is decomposed  into the product  of the two un ive r sa l  f requency functions. Compar i son  of our r e su l t s  with the 
va lues  calcula ted in [7] showed that  the FC moduli  d i f fer  by no m o r e  than 3%, but  that  the d i f fe rence  in phases  
is as  high as  7%. These  r a t h e r  la rge  deviat ions a r e  due, apparen t ly ,  to an tmsuccessfu l  method of calculat ion 
used in [7], the method of " ranging,"  using the boundary  conditions.  

Using Eq. (2), we can now wri te  a final fo rmula  for the modulus  of  the normal ized  FC of the ve loc i ty  
s e n s o r  
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, coo ~1/4 {" t + 2.32.t0-Sr 2 ]s/4 
I H (i~)l  = 1 ~ ~ ]  \ ~ + 4.45.~o-Sco ~_ + ~.~9.~o-%'_ / ' 

cod [~' l l lS 
w h e r e  ~ _ = ~ D }  " 

The  phase  o f  the FC is defined as  the sum of the phases  in Eqs.  (16) and (18). The  e r r o r  in the r e s u l t -  
ing  fo rmu la s  does  not exceed  1%. T h e s e  can  be  used to obtain the s p e c t r a  and the individual c a s e s  of  t u r b u -  
lent  ve loc i ty  f luctuations.  
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E X P E R I M E N T A L  I N V E S T I G A T I O N  O F  S O N I C  

A N D  S U P E R S O N I C  A N N U L A R  J E T S  

M.  A .  K o v a l '  a n d  A.  I .  S h v e t s  UDC 533.695.7 

A cons ide rab le  number  of t heo re t i ca l  and e x p e r i m e n t a l  r e p o r t s ,  which a r e  su rveyed  in [1, 2], e .g . ,  have 
been  devoted to the inves t igat ion of flow in supe r son ic  annular  je ts .  The  influence of the Mach number  of  the 
je t  and the expansion r a t i o  on the value of the b a s e  p r e s s u r e  has been  es tab l i shed  exper imen ta l ly  and the 
p r inc ipa l  m o d e s  of flow in annular  je t s  have been  de te rmined .  Until now, however ,  the influence of the r e l a -  
t ive  s i zes  of annular  nozz les  and of the prof i l ing of the f low-through pa r t  on the flow has  been  l i t t le  studied, 
in connect ion with which the p r e s e n t  work  was pe r fo rmed .  Compar i sons  a r e  made  of the expansion ra t io  of 
the escap ing  jet ,  the wave s t ruc tu r e ,  and the p r e s s u r e  in the b a s e  region.  

The  flow in th ree  sonic and th ree  supe r son ic  je t s  escaping  f rom annular  nozzles  with plane cuts was  
inves t iga ted  exper imen ta l ly .  The  subsonic  flow channels  in the nozz les  provided  for  not l e s s  than fivefold 
c o m p r e s s i o n  of the s t r e a m  and w e r e  prof i led  in such a way that  a uni form s t r e a m  was a s s u r e d  in the th roa t s  
of the supe r son ic  nozzles  or  a t  the cuts  of the sonic nozzles .  In the exi t  c r o s s  sec t ions  of the sonic nozzles  
the r a t io  of the inner  to the outer  d i a m e t e r  was  d /D = 0.5, 0.75, and 0.9 (Fig. 1). The  superson ic  channels  
w e r e  conical ,  and the nozzles  had the following p a r a m e t e r s :  d//D = 0.6; ~ = 15~ fl = 24~ Ma  = 2.63; d/D = 
0.68; # = 10~ fl = 6~ Ma  = 1.8; d / D  = 0.91; # = 10~ fl = 10~ Ma = 2.78 (M a is the r a t ed  Mach number  of 

the nozzle) .  

1 .  P r e s s u r e  i n  B a s e  R e g i o n  

In o rde r  to study the influence of the r e l a t ive  d i a m e t e r  of a nozzle  on the re la t ive  base  p r e s s u r e  Pl = 
Pb0/P~o m e a s u r e d  a t  the axis  of the nozzle  face (the index b is  for  the b a s e  cut, 0 for the nozzle  ax is ,  and 
for p a r a m e t e r s  of the flooded space  into which the je t  d i scha rges ) ,  in Fig. 1 we give the dependence Pl = f in )  
for  the th ree  sonic je t s  and one of the superson ic  ones (M a = 1: d / D  = 0.9 (1, 2), d /D = 0.75 (3, 4) d / D  = 
0.5 (5~ 6); M a = 2.63,/~ = 15 ~ fi = 24~ d / D  = 0.6 (7)). Since the expansion r a t io  of a sonic jet  cannot  be  l e s s  
than n = 1 (n = P a / P ~ ,  where  Pa is the p r e s s u r e  a t  the nozzle  cut), the quanti ty n '  = PaM2/p~ is taken as 
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